Всего: 154 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
В стране «Энергетика» 150 заводов и некоторые из них соединены автобусными маршрутами, которые не имеют остановок нигде, кроме этих заводов. Оказалось, что любые четыре завода можно разбить на две пары так, что между заводами каждой пары ходит автобус. Найдите наименьшее число пар заводов, которые могут быть соединены автобусными маршрутами.
Предположим, что какой-то завод X соединен автобусными маршрутами не более чем с 146 заводами. Тогда четверка заводов, состоящая из X и каких-то трех, с которыми он не соединен, не удовлетворяет условию задачи, поскольку X не может быть в паре ни с одним из трех оставшихся заводов. Поэтому каждый завод соединен хотя бы с 147 заводами. Следовательно, всего пар заводов, соединенных автобусными маршрутами, не меньше, чем
Покажем теперь, что может быть ровно 11 025 пар заводов. Занумеруем заводы числами от 1 до 150 и соединим автобусными маршрутами вое заводы, кроме первого и 150-го, а также заводов, номера которых отличаются на единицу. Проверим, что эта конструкция удовлетворяет условию задачи. Поскольку каждый завод соединен автобусными маршрутами с 147 заводами, общее количество пар соединенных заводов в точности и равно
Возьмем теперь любую четверку заводов. Возможны два случая.
1) Есть завод, не соединенный с двумя из трех остальных заводов. Пусть завод A не соединен с заводами В и C, но cоединен с заводом D. Тогда заводы В и С должны быть cоединены между cобой, так как остатки от деления их номеров на 150 различаются на 2. Поэтому пары (A, D) и (B, C) нам подходят.
2) Во заводы соединены с не менее чем двумя из трех остальных заводов. Пусть завод А соединен с заводам и В и С. По предположению завод D должен быть cоединен с В или С. Если он соединен с В. то нам подойдут пары (A, C) и (B, D) а если с C, то пары (A, B) и (C, D).
Ответ: 11 025.
Каждая задача оценивается по в соответствии с критериями. | ||
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты: незначительные (непринципиальные) арифметические ошибки. Негрубые ошибки: технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов. Грубые ошибки: I. Логические, приводящие к неверному заключению. II. Арифметические ошибки, искажающие смысл ответа. III. Неверный чертеж в геометрических задачах. IV. Принципиальные ошибки в применении элементарных формул и теорем. |
Для числовой последовательности
при всех Найдите каждый член xn такой последовательности и значения сумм
Имеем
Тогда — любое, и по индукции при и
Ответ: при x0 — любое.
Каждая задача оценивается по в соответствии с критериями. | ||
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты: незначительные (непринципиальные) арифметические ошибки. Негрубые ошибки: технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов. Грубые ошибки: I. Логические, приводящие к неверному заключению. II. Арифметические ошибки, искажающие смысл ответа. III. Неверный чертеж в геометрических задачах. IV. Принципиальные ошибки в применении элементарных формул и теорем. |
Известно, что свободный член многочлена с целыми коэффициентами по модулю меньше 100, а Найдите
Можно записать где Q(x) многочлен с целыми коэффициентами. Свободный член правой части равен 320k, где k — целое число. Таким образом, Условию удовлетворяет только значение
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Найдите решение системы
Рассмотрим систему с такими же коэффициентами, но без степеней. Сложим первое уравнение с четвертым, а второе — с третьим.
Откуда и
Подставляя в предыдущую систему, имеем
Следовательно, и далее, и Теперь, чтобы получить «настоящее» решение, остается вычислить корни соответствующих степеней из найденных величин.
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
В квадратной таблице из 2015 строк и столбцов расставлены положительные числа. Произведение чисел в каждой строке и в каждом столбце равно 2, а произведение чисел в любом квадрате 3 × 3 равно 1. Какое число стоит в центре таблицы?
Рассмотрим первые 3 строки таблицы. Из дополнительного условия следует, что если покрывать эти строки «встык» квадратами размер а двигаясь одновременно слева и справ а навстречу, то 336-й квадрат слева и 336-й квадрат справа перекроются одним столбцом, так как Обозначим произведение чисел в этом столбике (их 3 штуки) через M.
Тогда произведение всех чисел в первых 3 -х строках таблицы равно, с одной стороны, а с другой стороны, Таким образом,
Теперь рассмотрим средний (1008-й) столбец таблицы. Он ан алогичным образом разбивается на блоков по 3 элемент а, которые перекрываются на центральном элементе таблицы (если двигаться сверху и снизу навстречу). Обозначим этот элемент C. Произведение всех чисел этого столбца равно 2. Поэтому Откуда
Ответ: в центре таблицы стоит число 2−2017.
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Числа записаны в ряд. Средние арифметические любых трех соседних чисел равны. Найдите все значения α, при которых это возможно.
Обозначим данные 5 чисел через
Рассмотрим пару полученных равенств.
Из первого
а) Если то Тогда
Следовательно, что может быть только при четных n. Таким образом, в первом случае получаем
б) Если Тогда
Hо тогда Таким образом, во втором случае решений нет.
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Решите уравнение в котором [α] означает целую часть числа α.
Целое число может принимать только значения 0 и
а) Если то Следовательно, откуда Решением этого уравнения являются Заметим, что при таких x.
б) Если то Но следовательно, Поэтому уравнение не имеет решений.
в) Если то При этих значениях При подстановке в уравнение это дает чего не может быть.
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Известно, что Найдите область значений функции
Пусть Если то Вместе с условием задачи получаем, что при Теперь
Если то
Если то
Итак, если то
Заметим, что обе границы достигаются. Нижняя — при верхняя — при таком x, при котором Он находится из уравнения и равен
Пусть теперь Функции и нечетны, поэтому, если то и
Для всех из неравенства следует, что
Это означает, что функция не ограничен а снизу, т. е. любое отрицательное число, меньшее −2, принадлежит области ее значений.
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Усеченной разностью чисел x и y называется операция результат которой равен обычной разности если и нулю, если Решите систему уравнений:
Первое уравнение системы эквивалентно неравенству Выразим из второго уравнения и подставим в неравенство. Тогда
Таким образом, система имеет бесконечное количество решений, лежащих на луче
Если решать начальное неравенство относительно y, то получится альтернативная запись ответа
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
В квадратной таблице из 2015 строк и столбцов расставлены положительные числа. Произведение чисел в каждой строке и в каждом столбце равно 1, а произведение чисел в любом квадрате размером клеток равно 2. Какое число стоит в центре таблицы?
Рассмотрим первые 1008 строк таблицы. Из дополнительного условия следует, что если покрывать эти строки двумя квадратами размера то эти квадраты перекроются одним столбцом. Обозначим произведение чисел в этом столбике (их 1008 штук) через M.
Тогда произведение всех чисел в первых 1008 строках таблицы равно, с одной стороны, 1, а с другой стороны, Таким образом,
Теперь рассмотрим средний столбец таблицы. Он аналогичным образом разбивается на два блока по 1008 элементов, которые перекрываются на центральном элементе таблицы (если двигаться сверху и снизу навстречу). Обозначим этот элемент C.
Произведение всех чисел этого столбца равно 1. Поэтому Откуда
Ответ: в центре таблицы стоит число 16.
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Маленькая егоза побежала наперегонки с лошадкой, установленной на механической карусели. Через α секунд она обнаружила, что лошадка, сделав круг, догнала ее. Мгновенно развернувшись, маленькая егоза побежала с той же скоростью навстречу лошадке и встретилась с ней через секунд. Определите, за какое время карусель совершает полный разворот, если все движения равномерны.
Пусть v — угловая скорость егозы, угловая скорость карусели, а x — период обращения карусели. От метим,
После разворота расстояние, которое егоза пробежал а за секунд, карусель прошла бы за секунд, то есть
Отсюда получаем уравнение
Ответ: карусель совершает полный оборот за секунд.
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Решите уравнение в котором [α] означает целую часть числа α.
Целое число может принимать только
1) Если то
Решая это уравнение, находим В этих точках Равенство верно.
2) Если то чего не бывает. Ответом будет являться только первый случай.
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Мост через реку соединяет два разных региона страны. Как-то раз один из регионов подновил краску на относящийся к нему части моста. Если бы свежеокрашенная часть моста оказалась на 30% больше, то неподкрашенная часть была бы на 50% меньше. Может ли окрашенная часть моста составлять ровно его половину? Какую часть моста нужно докрасить (или наоборот), чтобы была окрашена ровно половина моста?
Пусть x и y — доли подкрашенной и не... частей. Ясно, что Согласно условию, Получаем уравнение
из которого можно найти отношение Теперь можно долю окрашенной части
Таким образом, подкрашено больше половины моста на 12,5 %.
Ответ: подкрашено больше половины моста на 12,5 %.
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Усеченной разностью чисел x и y называется операция результат которой равен обычной разности если и нулю, если Решите систему уравнений:
Первое уравнение системы эквивалентно неравенству Выразим y из второго уравнения и подставим в неравенство.
Таким образом, система имеет бесконечное количество решений, лежащих на луче
Если решать начальное неравенство относительно y, то получится альтернативная запись ответа
Ответ:
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
В ряд выписаны 2015 положительных чисел. Произведение всех чисел равно 2015, а произведение любых трех подряд стоящих чисел равно 1. Чему равно 1008-е по счету число?
Из дополнительного условия следует, что если разбивать ряд на блоки по 3 числа «встык», двигаясь одновременно слева и справа навстречу, то 336-й блок слева и 336-й блок справа перекроются на среднем числе. Обозначим это число C.
Тогда произведение всех чисел равно, с одной стороны, 2015, а с другой стороны, Таким образом,
Ответ: 1008-ое по счету число равно
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Существует ли выпуклый многоугольник, имеющий 2015 диагоналей?
Число диагоналей выпуклого n-угольник а равно
Решим уравнение
Его дискриминант
Заметим, что
и D заканчивается цифрой 9. Если D является квадратом целого числа m, то m заканчивается цифрой 3 или 7, т. е. возможны только два варианта: или Легко проверяется, что
Отсюда Выбирая положительное значение, получаем Таким образом, указанный многоугольник существует, это 65-угольник.
Ответ: да, это 65-угольник.
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
Дан отрезок AB. Пользуясь только циркулем, необходимо отметить точку C, находящуюся на продолжении отрезка AB и такую, что отрезок AC вдвое длиннее исходного. Опишите алгоритм (последовательность действий) такого построения.
Достаточно сообразить, что самая длинная диагональ правильного шестиугольника является диаметром окружности, в которую он вписан, а его сторона равна радиусу этой окружности.
Ответ: Алгоритм построения.
1. Построить окружность с центром в точке В и радиусом АВ.
2. Раствором циркуля, равным АВ, от метить на полученной окружности шесть равноудаленных точек, начиная от точки A.
3. Точка, симметричная точке А относительно центра окружности, и будет являться искомой точкой С.
1. Проверку и оценивание работ проводит Жюри Олимпиады.
2. Задача оценивается по
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты — незначительные (непринципиальные) арифметические ошибки.
Негрубые ошибки — технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов.
Грубые ошибки.
I. Логические, приводящие к неверному заключению.
II. Арифметические ошибки, искажающие смысл ответа.
III. Неверный чертеж в геометрических задачах.
IV. Принципиальные ошибки в применении элементарных формул и теорем.
3. Решение, приведенное в черновике или выполненное карандашом, не проверяется и не оценивается.
4. По окончании проверки подсчитывается суммарная оценка работы как сумма оценок за задачи 1−5 с весом 2.
5. Суммарная оценка проставляется на работу и подтверждается подписью члена Жюри.
1. Построить окружность с центром в точке В и радиусом АВ.
2. Раствором циркуля, равным АВ, от метить на полученной окружности шесть равноудаленных точек, начиная от точки A.
3. Точка, симметричная точке А относительно центра окружности, и будет являться искомой точкой С.
Двухтарифный счетчик электроэнергии ведет раздельный учет затрат в «ночное» и «дневное» время, при этом «ночной» тариф составляет 80% «дневного». Если «дневной» тариф повысится на 10% (при неизменном «ночном»), то какой процент «дневного» расхода электроэнергии придется перенести на «ночное» время, чтобы суммарная суточная стоимость осталась без изменений?
Пусть суммарный суточный расход равен M. Представим имеющуюся информацию в виде таблицы.
Поскольку суммарная стоимость не изменилась, получаем уравнение
Преобразуем его:
Первые слагаемые равны друг другу (т. к. расход остается неизменным), следовательно, Это означает, что часть дневного расхода нужно перенести на ночное время.
Ответ: часть или 33,(3)%.
Каждая задача оценивается по в соответствии с критериями. | ||
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты: незначительные (непринципиальные) арифметические ошибки. Негрубые ошибки: технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов. Грубые ошибки: I. Логические, приводящие к неверному заключению. II. Арифметические ошибки, искажающие смысл ответа. III. Неверный чертеж в геометрических задачах. IV. Принципиальные ошибки в применении элементарных формул и теорем. |
Для функции решите уравнение
Функция имеет вид при Она монотонно возрастает, поэтому уравнение эквивалентно уравнению Вычислим
С учетом этого уравнение примет вид
Равенство возможно только при выполнении условий и
Если то
Таким образом,
Ответ:
Каждая задача оценивается по в соответствии с критериями. | ||
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты: незначительные (непринципиальные) арифметические ошибки. Негрубые ошибки: технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов. Грубые ошибки: I. Логические, приводящие к неверному заключению. II. Арифметические ошибки, искажающие смысл ответа. III. Неверный чертеж в геометрических задачах. IV. Принципиальные ошибки в применении элементарных формул и теорем. |
В шахматном кружке занимаются мальчики и девочки. Их разбили на группы по 6 человек, при чем в каждой группе есть и девочки и мальчики. В каждой группе прошел круговой турнир, каждый сыграл по одной партии с каждым из остальных членов той же группы, других игр не было. Может ли при этом число партий между мальчиками быть на 23 больше числа партий между девочками?
Число мальчиков в каждой группе может принимать значения Рассмотрим следующие величины:
Занесем эти данные в таблицу.
Тогда
кратно 5 и не может быть равно 22 или 23. Далее,
кратно 5 и не может быть равно 28 или −4.
Ответ: нет.
Каждая задача оценивается по в соответствии с критериями. | ||
Вид погрешности или ошибки | Отметка в работе | Баллы |
---|---|---|
Решение задачи верное, выбран рациональный путь решения | + | 10 |
Решение верное, но путь не рационален или имеются один — три недочета или негрубая ошибка | + | 9 |
Решение верное, но путь не рационален и имеются один — три недочета или негрубая ошибка | ± | 7−8 |
Ход решения верный, но есть несколько негрубых ошибок или решение не завершено | ∓ | 5−6 |
Допущены грубые ошибки, но ответ получен (неверный) | ∓ | 3−4 |
Допущены грубые ошибки и ответ не получен либо решение лишь начато, то что начато — без ошибок | − | 2 |
Решение начато, но продвижение ничего не дает для результата | − | 1 |
Задача не решилась | 0 | 0 |
Недочеты: незначительные (непринципиальные) арифметические ошибки. Негрубые ошибки: технические ошибки в применении формул и теорем, не влияющие на смысл решения; необоснованность логических (верных) выводов. Грубые ошибки: I. Логические, приводящие к неверному заключению. II. Арифметические ошибки, искажающие смысл ответа. III. Неверный чертеж в геометрических задачах. IV. Принципиальные ошибки в применении элементарных формул и теорем. |
Наверх