Задания
Версия для печати и копирования в MS WordНайдите количество пар (m, n) натуральных чисел, таких что каждый из корней уравнения не превосходит 10.
Решение.
Поскольку корни уравнения существуют, то Это неравенство верно для всех натуральных чисел m и n. Чтобы каждый из корней уравнения не превосходил 10 достаточно, чтобы больший корень не превосходил 10. Таким образом, достаточно найти количество пар натуральных чисел, таких что
Возводя в квадрат и учитывая, что получаем
Из последнего неравенства находим ответ:
Ответ: 450.