При каких значениях
Сделаем замену переменных: и Уравнение можно преобразовать к виду:
Теперь введем переменную t: Тогда правая часть уравнения может выть преобразована к виду:
Функция g(t) при отрицательных значениях аргумента отрицательна, а при положительных ее можно представить в виде:
из которого ясно, что функция принимает максимальное значение, когда знаменатель положителен и минимален. Это произойдет при то есть при При этом максимальное значение правой части уравнения будет равно 3. Левая часть уравнения
всегда больше или равна 3 и достигает минимального значения при Отсюда можно найти значения переменной x:
которые претендуют на то, чтобы быть корнями исходного уравнения. Значения переменной x у левой и правой части должны совпадать, поэтому решения будут при таких значениях n, при которых выполнится хотя бы одно из условий:
В обоих случаях получаются линейные диофантовы уравнения, которые решаются представлением k через классы делимости на 7 с остатком Первое из этих уравнений относительно переменной n сводится к уравнению которое на заданном промежутке натуральных чисел имеет единственное решение Второе уравнение сводится к уравнению: которое имеет единственное решение
Ответ: {6, 9}.