сайты - меню - вход - но­во­сти


Задания
Версия для печати и копирования в MS Word
Тип 0 № 2375
i

Най­ди­те все пары про­стых чисел p и q, для ко­то­рых  дробь: чис­ли­тель: p в кубе плюс 1700, зна­ме­на­тель: q в кубе плюс 96 конец дроби = q в кубе .

Спрятать решение

Ре­ше­ние.

Пе­ре­пи­шем урав­не­ние в виде

p в кубе плюс 1700=q в кубе левая круг­лая скоб­ка q в кубе плюс 96 пра­вая круг­лая скоб­ка

и пе­рей­дем к остат­кам от де­ле­ния на 7, по­лу­чим

p в кубе минус 1 \equiv q в кубе левая круг­лая скоб­ка q в кубе минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка \bmod 7 пра­вая круг­лая скоб­ка .

Сле­до­ва­тель­но,

p в кубе \equiv левая круг­лая скоб­ка q в кубе минус 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка \bmod 7 пра­вая круг­лая скоб­ка .

Если про­стое число q от­лич­но от 7, то q дает не­ну­ле­вой оста­ток от де­ле­ния на 7 и, зна­чит, q в кубе дает оста­ток 1 или 6. Тогда  левая круг­лая скоб­ка q в кубе минус 1 пра­вая круг­лая скоб­ка в квад­ра­те дает оста­ток 0 или 4 при де­ле­нии на 7. Пе­ре­бо­ром остат­ков легко убе­дить­ся, что куб не может да­вать оста­ток 4 при де­ле­нии на 7. По­это­му p делитcя на 7 и, зна­чит, p=7. Такое число p не под­хо­дит. Дей­стви­тель­но,

p в кубе плюс 1700=7 в кубе плюс 1700=2043,

что де­лит­ся на 3. Тогда q в кубе левая круг­лая скоб­ка q в кубе плюс 96 пра­вая круг­лая скоб­ка де­лит­ся на 3, по­это­му либо q, либо q в кубе плюс 96 де­лит­ся на 3. В обоих слу­ча­ях по­лу­ча­ем, что q де­лит­ся на 3 и, зна­чит, q=3. Но

3 в кубе левая круг­лая скоб­ка 3 в кубе плюс 96 пра­вая круг­лая скоб­ка =3321 не равно q 2043.

Таким об­ра­зом, q долж­но рав­нять­ся 7. В этом слу­чае p=53.

 

Ответ: p=53, q=7.

Спрятать критерии
Критерии проверки:

Общая схема:

0 бал­лов  — вы­став­ля­ет­ся, если участ­ник к ре­ше­нию за­да­чи не при­сту­пал или на­ча­тый ход ре­ше­ния пол­но­стью не­ве­рен;

1 балл  — вы­став­ля­ет­ся, если участ­ник при­сту­пил к ре­ше­нию за­да­чи, ука­зал вер­ное на­прав­ле­ние ре­ше­ния за­да­чи и по­лу­чил пра­виль­ные про­ме­жу­точ­ные ре­зуль­та­ты, но при этом не про­дви­нул­ся на­столь­ко, чтобы можно было су­дить о том, каким об­ра­зом он со­би­рал­ся по­лу­чить окон­ча­тель­ный ответ (то есть весь ход ре­ше­ния не пред­став­лен);

2 балла  — вы­став­ля­ет­ся, если вы­бран­ный участ­ни­ком ход ре­ше­ния за­да­чи яв­ля­ет­ся в прин­ци­пе пра­виль­ным, но при этом участ­ник не смог его ре­а­ли­зо­вать в силу серьёзных оши­бок;

3 балла  — вы­став­ля­ет­ся, если ре­ше­ние яв­ля­ет­ся в целом пра­виль­ным, но со­дер­жит ошиб­ки, по­вли­яв­шие на ответ;

4 балла  — вы­став­ля­ет­ся, если участ­ник решил за­да­чу в целом пра­виль­но и по­лу­чил вер­ный ответ; при этом в ре­ше­нии до­пус­ка­ют­ся не­зна­чи­тель­ные не­точ­но­сти.

 

Фак­то­ры, вли­я­ю­щие на оцен­ку.

1.  Одна из ос­нов­ных целей Олим­пи­а­ды  — вы­яв­ле­ние у обу­ча­ю­щих­ся твор­че­ских спо­соб­но­стей. По­это­му в слу­чае пред­став­ле­ния участ­ни­ком ин­те­рес­но­го ори­ги­наль­но­го под­хо­да к ре­ше­нию за­да­чи, оцен­ка за ре­ше­ние может быть уве­ли­че­на на 1 балл.

2.  Пра­виль­ный ответ к за­да­че, при­ве­ден­ный без до­ста­точ­ных обос­но­ва­ний, либо при на­ли­чии оши­бок в ре­ше­нии, либо при от­сут­ствии ре­ше­ния, не ведёт к уве­ли­че­нию оцен­ки, ко­то­рая вы­став­ля­ет­ся участ­ни­ку за дан­ную за­да­чу.

3.  Если участ­ник не довел за­да­чу до от­ве­та, то ито­го­вая оцен­ка за дан­ную за­да­чу не может пре­вы­шать 1 балл.

4.  Если за­да­ча ре­ше­на пе­ре­бо­ром воз­мож­ных ва­ри­ан­тов, и при этом пе­ре­бор не­пол­ный, то за за­да­чу вы­став­ля­ет­ся до 1 балла. Если участ­ник по­до­брал част­ное ре­ше­ние без обос­но­ва­ния и про­ве­рил его пра­виль­ность, то в этом слу­чае за за­да­чу вы­став­ля­ет­ся до 0,5 бал­лов.

5.  Если за­да­ча ре­ше­на при до­пол­ни­тель­ном пред­по­ло­же­нии, ко­то­рое от­сут­ству­ет в усло­вии, то за за­да­чу вы­став­ля­ет­ся

а)  до 1 балла, если это пред­по­ло­же­ние можно до­ка­зать;

б)  до 0,5 бал­лов, если оно не обя­за­но вы­пол­нять­ся, но не про­ти­во­ре­чит усло­вию за­да­чи;

в)  0 бал­лов, если оно про­ти­во­ре­чит усло­вию.

6.  Если в ра­бо­те при­ве­де­ны два ре­ше­ния или от­ве­та к одной за­да­че, про­ти­во­ре­ча­щие друг другу, то за за­да­чу ста­вит­ся 0 бал­лов.