а) Решите уравнение
б) Докажите, что если все ненулевые коэффициенты некоторого многочлена равны то все его корни по модулю меньше двух.
в) Известно, что и Докажите, что
а)Очевидно при левая часть положительна, а правая отрицательна, поэтому отрицательных корней быть не может. При положительных x поделим уравнение на Получим
В левой части сумма k выражений вида что при положительных a не меньше двух:
причем равенство достигается только при Поэтому сумма k таких выражений не меньше и равенство достигается только при Перепишите уравнение в виде
Ответ:
б) Докажите, что если все ненулевые коэффициенты некоторого многочлена равны то все его корни по модулю меньше двух.
Запишем многочлен в виде (если старший коэффициент равен −1, домножим его на −1 от этого его корни не изменятся.
Пусть a его корень, Тогда но
Противоречие. Докажите, что если то
в) В силу обобщенных формул Виета, из данных уравнений следует, что числа суть корни кубического многочлена Постройте обычным способом график кубической функции взгляните на полученный рисунок и ... решение закончено!
Известно, что и Докажите, что Рассмотрим кубический многочлен
Он имеет корни Обозначив получим, что уравнение имеет три корня. Выясним для начала, когда это возможно.
Пусть тогда
поэтому возрастает при убывает при и возрастает при При этом и поэтому уравнение имеет три корня тогда и только тогда, когда
Далее, и поэтому прямая пересекает график функции на промежутке при а на промежутке при Отсюда и получаем, что