Решите неравенства:
а)
б)
в) Найдите все такие целые k, что уравнение не имеет решений.
а) Неравенство определено при и при таких x можно домножить его на и возвести потом в квадрат (обе части будут неотрицательны)
Корнями уравнения будут поэтому множеством решения неравенства будут Ясно, что поэтому учитывая условие получим окончательный ответ
Ответ:
б) Найдем область определения неравенства. Требуется выполнение следующих условий: и Последнее условие дает и Вместе с первыми получим область определения
Теперь преобразуем неравенство и сделаем замену тогда и
Неравенство примет вид
С помощью метода интервалов получим ответ Отсюда где Поскольку все такие x входят в ОДЗ неравенства, это и есть окончательный ответ.
Ответ:
в) Преобразуем уравнение
Обозначим тогда уравнение примет вид и нам нужно, чтобы это уравнение не имело корней на промежутке Для этого достаточно, чтобы были положительны значения в концах этого отрезка и при если то есть при
Подставляя получим т. е. где Подставляя получим т. е. где Подставляя получим
Первым двум условиям удовлетворяют При этом для этих условий достаточно. Для прочих k еще нужно выполнение условий поэтому не подходит. Окончательно
Ответ: