Найдите все значения параметра a, при которых система
имеет ровно два решения.
Рассмотрим первое уравнение системы и изобразим множество его решений на координатной плоскости. Для раскрытия модулей найдём множества точек, в которых выражения под модулями обращаются в ноль. Это прямые
на 4 части, и в каждой из этих частей знаки выражений под модулями постоянны. Чтобы их определить, можно выбрать в каждой из четырёх частей по точке и найти знаки выражений в этих точках. Возьмём область, расположенную снизу от обеих прямых. В ней лежит, например, точка Подстановкой несложно убедиться, что в этой точке оба выражения и отрицательны. Таким образом, Уравнение принимает вид
С учётом рассматриваемых ограничений подходит отрезок с концами в точках и Аналогично рассматриваем остальные три случая, и в итоге получаем границы квадрата K с вершинами в точках и Эта фигура не имеет пересечения с полуплоскостью поэтому можно считать, что С учётом указанного замечания второе уравнение можно записать в виде
(опустив модуль у переменной y). Обозначим множество точек, определяемых этим уравнением, через Если у уравнения нет решений. При оно задаёт две точки (8; 6) и (−8; 6). Поскольку обе они не принадлежат квадрату K, система не имеет решений, и значение не удовлетворяет условию задачи. Перейдём к случаю
При уравнение принимает вид
и мы получаем окружность радиуса с центром в точке (8; 6) (или её часть, лежащую в полуплоскости если вся она в этой полуплоскости не помещается). Поскольку уравнение инвариантно относительно замены x на множество симметрично относительно оси Оу. Таким образом, есть совокупность полученной выше окружности (или её части) и окружности, получающейся из уже построенной отражением относительно оси Оу.
Если график
не пересекает квадрат K, и система уравнений не имеет решений. Если система уравнения имеет два решения — точки и Если дуга окружности
и пересекает отрезок AB дважды — эти две точки, а также им симметричные относительно оси Оу, образуют 4 различных решения системы. Если дуга окружности
и пересекает отрезки DA и CB в двух точках с положительной абсциссой. Аналогично, эти две точки, а также им симметричные относительно оси Оу, образуют 4 различных решения системы. Если система уравнений имеет два решения — точки (0; 0) и (0; 12). Наконец, если дуга окружности
и не пересекает стороны квадрата K и система уравнений не имеет решений. Таким образом, система уравнений имеет ровно два решения только при и
Ответ: