а) Решите неравенство
б) Найдите все a, при которых уравнение имеет решения на отрезке
в) Найдите наименьшее расстояние между диагональю прямоугольного параллелепипеда с ребрами 4, 2, 4 см и не пересекающей ее диагональю его квадратной грани.
г) Найдите наибольшую площадь четырехугольника, длины последовательных сторон которого равны 2, 3, 4, 3 см.
а) Для начала найдем ОДЗ неравенства
Значит ОДЗ неравенства это При получаем
поэтому неравенство верно. При функция
возрастает и при этом Значит, подходят все и не подходят
Ответ:
б) Ясно, что нужно просто найти наименьший положительный корень этого уравнения и взять a не меньшие этого корня. Решая уравнение, получим где решим
Отсюда сразу видно, что первые корни определены только при а вторые — только при Кроме того, оба корня с минусом перед радикалом сразу отрицательны и их можно не учитывать, поскольку получим или
Далее, ясно, что при меньших k получатся меньшие значения этих выражений, поэтому достаточно взять наименьшие k и сравнить результаты между собой. Сравним
или
или
Поскольку
наименьший корень равен
Ответ:
в) Пусть этот параллелепипед это ABCDA1B1C1D1, причем AB = AD = 4, AA1 = 2. Будем искать расстояние между AC1 и BD.
Заметим сразу, что прямые AC1 и BD перпендикулярны по теореме о трех перпендикулярах (проекция AC1 на ABCD это AC, а диагонали квадрата перпендикулярны). Пусть O — середина BD. Опустим перпендикуляр из O на AC1. Это и будет искомое расстояние между прямыми. В самом деле, этот отрезок будет перпендикулярен AC1 по построению, а его проекция будет лежать на диагонали AC (поскольку он лежит в плоскости ACC1A1), поэтому проекция (а значит и он сам) будет перпендикулярна BD.
Итак, можно вычислять ответ
Ответ:
г) Рассмотрим четырехугольник ABCD, Пусть, далее, По неравенству треугольника получим и и откуда Ясно, что любое такое x подходит — оба треугольника ABC и ADC удается построить и склеить по стороне AC. Применим тогда к каждому из них формулу Герона, получим
Обозначим теперь (поскольку функция монотонна при ). Тогда нам нужно будет найти наибольшее значение функции при Возьмем ее производную
Поэтому знак производной совпадает со знаком выражения которое очевидно убывает. Значит, нужно найти его корень и тогда на промежутке производная будет положительна (а функция возрастать), а на промежутке производная будет отрицательна (а функция убывать), поэтому наибольшее значение функции будет при Решим уравнение
Значит нужно выбрать и x — корень уравнения и получить площадь
На самом деле четырехугольник наибольшей площади с данными сторонами — вписанный. В нашем случае на его, роль, очевидно, подойдет равнобедренная трапеция.
Ответ: — площадь трапеции.