а) Решите неравенство
б) Найдите все a, при которых уравнение не имеет решений на отрезке
в) Найдите наименьшее расстояние между диагональю прямоугольного параллелепипеда с ребрами
г) Найдите наибольшую площадь четырехугольника, длины последовательных сторон которого равны
а) Вместо того, чтобы решать иррациональное неравенство путем двукратного возведения в квадрат, можно поступить следующим образом. Пусть Поскольку на луче функции и — убывающие, то и функция f убывает на нем. Аналогично, f возрастает на луче Далее, а Таким образом, только при
Ответ:
б) Имеем: тогда и только тогда, когда или т. е. когда число а является значением на отрезке (при некотором ) одной из функций или Графики этих функций изображены на рисунке, откуда и следует ответ.
Ответ:
в) Подчеркнем прежде всего, что основную часть решения данной задачи составляет геометрическое рассуждение. Именно, требуется доказать, что искомым расстоянием между диагональю BD грани ABCD и диагональю AC1 параллелепипеда является длина перпендикуляра, опущенного на AC1 из точки K — центра ABCD (см. рисунок). Для этого достаточно доказать, что прямая KP, которая по построению перпендикулярна AC1 также перпендикулярна и BD. Действительно, так как диагонали AC и BD и прямые CC1 и BD перпендикулярны между собой, то прямая BD перпендикулярна плоскости (ACC1), значит, она перпендикулярна любой прямой в этой плоскости, в частности, и прямой KP. Само вычисление чрезвычайно просто:
Заметим, наконец, что если длины ребер параллелепипеда различны, то общий перпендикуляр к BD и AC1 уже не будет пересекать BD в его середине. В этом случае проще всего использовать методы аналитической геометрии, чтобы получить следующую общую формулу
Ответ:
г) — площадь трапеции. Пусть d — диагональ четырехугольника. Тогда
Прямое дифференцирование показывает, что эта функция достигает своего наибольшего значение при