Найдите все значения параметра a, при которых система
а) имеет ровно 3 решения;
б) имеет ровно 2 решения.
Первое уравнение системы не меняется при замене x на −x и/или y на −y. Следовательно, множество точек, задаваемых первым уравнением симметрично относительно обеих осей координат. В первой четверти получаем часть прямой
Второе уравнение системы может быть записано в виде Оно задаёт окружность с центром
a) И ромб, и окружность симметричны относительно оси ординат, следовательно, 3 решения возможны только в том случае, когда одна из общих точек окружности и ромба лежит на оси ординат. Это происходит, если радиус окружности равен отрезку QA или отрезку QC, то есть или Несложно видеть, что при система имеет 3 решения, а при решений. Значит, 3 решения возможны только при
б) Пусть
Тогда отсюда Пусть окружность радиуса касается стороны AB в точке J, а окружность радиуса касается стороны BC в точке L. Треугольник JAQ — прямоугольный,
поэтому
так как он равен угловому коэффициенту прямой AB. Тогда
По теореме Пифагора для треугольника JQA получаем
откуда Поскольку треугольники JQA и LQC подобны и коэффициент подобия равен то
Окончательно получаем
Ответ: а) б)
Изображено множество точек, удовлетворяющих первому уравнению системы 1 балл.
Показано, что второе уравнение системы задаёт окружность переменного радиуса (или точку) 1 6алл.
Решён пункт а) — 2 балла.
Если указано, что нечётное число решений может быть только когда окружность проходит через вершину ромба, принадлежащую его меньшей диагонали, и при этом получен неверный ответ (лишние решения), то 1 балл вместо 2.
Решён пункт б) — 3 балла.
Отсутствует проверка того, что если окружность проходит через ближайшую вершину ромба, то она не имеет общих точек с двумя дальними сторонами ромба и пр. — баллы не снимать.
Если радиус окружности равен a вместо |a|, то снять 1 балл при условии, что полностью решён хотя бы один из пунктов а)
Наверх