Олимпиада абитуриентов естественно-научных факультетов СПбГУ, 1997 год, вариант 1

- **1.** a) Решите уравнение $\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1$.
- б). Числа $p, q \in [0; 1]$ выбираются случайным образом. Найдите вероятность того, что многочлен $x^2 + px + q$ имеет действительные кории.
- в) Докажите, что если не существует треугольника с длинами сторон a, b, c, то нет и треугольника со сторонами a^n, b^n, c^n (n натуральное).
 - г) Докажите, что треугольник ABC является прямоугольным тогда и только тогда, когда $\cos^2 A + \cos^2 B + \cos^2 C = 1$.
 - **2.** a) Решите неравенство $\lg^2(x+1) \ge \lg(x+1)\lg(x-1) + 2\lg^2(x-1)$.
 - б) Решите уравнение $4\cos x\cos 2x\cos 4x = \cos 7x$.
 - в) Найдите все b, при которых система неравенств

$$\begin{cases} y \geqslant (x-b)^2, \\ x \geqslant (y-b)^2 \end{cases}$$

имеет единственное решение.

- 3. Пусть $p(x) = a_0 + a_1 x + \ldots + a_n x^n$.
- а) Докажите, что если $p(k)\in\mathbb{Q}$ при всех $k\in\mathbb{Z}$, то $a_i\in\mathbb{Q}$ при всех $i=0,\ 1,\ \ldots,\ n.$
- б) Докажите, что из того, что $p(k) \in \mathbb{Z}$ при всех $k \in \mathbb{Z}$, не следует, что $a_i \in \mathbb{Z}$ при всех $i = 0, 1, \ldots, n$.
- в) Пусть $q_i(x) = \frac{x(x-1)\dots(x-i+1)}{i!}, \quad q_0(x) = 1.$ Докажите, что если $p(k) \in \mathbb{Z}$ при всех $k \in \mathbb{Z}$, то $p(x) = \sum b_i q_i(x),$ где $b_i \in \mathbb{Z}$ при всех $i = 0, 1, \dots, n.$
 - **4.** а) Какое из чисел больше, 2^{300} или 3^{200} ?
- б) Представьте число 1997 в виде суммы нескольких натуральных слагаемых с максимально возможным произведени-
- в) Докажите, что произведение нескольких положительных чисел, сумма которых равна 1997, не превосходит e^{800} .