Всего: 4 1–4
Добавить в вариант
а) Найдите уравнения тех касательных к графику функции которые проходят через начало координат.
б) При каких a уравнение имеет решения?
в) Сколько решений имеет уравнение
г) Сколько рациональных решений имеет уравнение пункта в?
а) Поскольку касательная в точке имеет уравнение то есть Если эта прямая проходит через начало координат, то откуда и уравнение касательной имеет вид
Ответ:
б) Если то
Если то корней очевидно нет. Пусть теперь Функция является выпуклой вниз (ее вторая производная ), поэтому прямые, проходящие ниже касательной при положительных x не будут пересекать ее график, а проходящие выше касательной — будут (см. рис.). При имеем поэтому там пересечений не будет. Окончательно
Ответ:
в) Запишем уравнение в виде Ясно, что не было корнем исходного уравнения. Тогда
Исследуем теперь функцию в левой части. При она примет вид поэтому
что положительно при и отрицательно при значит, эта функция возрастает при и убывает
(мы использовали правило Лопиталя) и
Итак, функция принимает все значения из промежутка при и принимает все значения из промежутка при В частности поэтому такое значение при положительных x функция принимает дважды. Если же
то
то есть функция нечетна. Значит, она при принимает значение столько же раз, сколько при принимает значение Это, очевидно, происходит один раз. Итого имеется три корня уравнения — по одному на промежутках
Ответ: три решения.
г) Пусть
Если то в левой части записано целое число, тогда в правой тоже должно быть целое число. Однако при возведении несократимой дроби в степень она не может стать сократимой, поэтому знаменатель ее будет равен а должен быть единицей, откуда и
Итак, либо x натуральное число, либо где b — натуральное. Ясно что подходит в уравнение. Это корень, лежавший на На есть всего два натуральных числа и они корнями не являются.
Наконец пусть и уравнение принимает вид что невозможно, поскольку
Ответ: одно решение
За каждый из четырех пунктов сюжета выставляется одна из следующих оценок: + (3 балла), ± (2 балла), ∓ (1 балл), − (0 баллов) Максимум за сюжет 12 баллов. При этом необходимо руководствоваться следующим. | |
Критерии оценивания выполнения заданий | Баллы |
---|---|
Верное и полное выполнение задания | 3 |
Ход решения верный, решение доведено до ответа, но допущен один недочет | 2 |
Ход решения верный, решение доведено до ответа, но допущено два недочета или одна грубая ошибка | 1 |
Остальные случаи | 0 |
К недочетам относятся, например: описки, неточности в использовании математической символики; погрешности на рисунках, недостаточно полные обоснования; неточности в логике рассуждений при сравнении чисел, доказательстве тождеств или неравенств; вычислительные ошибки, не повлиявшие принципиально на ход решения и не упростившие задачу, если задача не являлась вычислительной; замена строго знака неравенства нестрогим или наоборот; неверное присоединение либо исключение граничной точки из промежутка монотонности и аналогичные. Грубыми ошибками являются, например: потеря или приобретение постороннего корня; неверный отбор решения на промежутке при правильном решении в общем виде; вычислительная ошибка в задаче на вычисление; неверное изменение знака неравенства при умножении на отрицательное число, логарифмировании или потенцировании и т. п. |
Укажите, при каких значениях параметра a уравнение имеет решение:
Для упрощения исследования введем при уравнение примет вид:
откуда следует:
то есть
Данное уравнение может иметь решение при
но не все значения параметра a, удовлетворяющие этому ограничению, подходят, поскольку
и, следовательно,
Заметим, что следовательно,
Выделяя на тригонометрическом круге (см. рисунок), видим, что при
имеем Следовательно, исходное уравнение будет иметь хотя бы одно решение, если
Ответ:
Найдите все значения a, при каждом из которых уравнение
Относительно переменной уравнение принимает вид
Функция принимает все положительные значения, кроме Поэтому исходное уравнение не имеет корней, если корни уравнения относительно t не принадлежат множеству
При имеем поэтому такое подходит. При это квадратное уравнение, корни которого равны
Ответ:
При каких значениях
Сделаем замену переменных: и Уравнение можно преобразовать к виду:
Теперь введем переменную t: Тогда правая часть уравнения может выть преобразована к виду:
Функция g(t) при отрицательных значениях аргумента отрицательна, а при положительных ее можно представить в виде:
из которого ясно, что функция принимает максимальное значение, когда знаменатель положителен и минимален. Это произойдет при то есть при При этом максимальное значение правой части уравнения будет равно 3. Левая часть уравнения
всегда больше или равна 3 и достигает минимального значения при Отсюда можно найти значения переменной x:
которые претендуют на то, чтобы быть корнями исходного уравнения. Значения переменной x у левой и правой части должны совпадать, поэтому решения будут при таких значениях n, при которых выполнится хотя бы одно из условий:
В обоих случаях получаются линейные диофантовы уравнения, которые решаются представлением k через классы делимости на 7 с остатком Первое из этих уравнений относительно переменной n сводится к уравнению которое на заданном промежутке натуральных чисел имеет единственное решение Второе уравнение сводится к уравнению: которое имеет единственное решение
Ответ: {6, 9}.
Наверх