сайты - меню - вход - но­во­сти


Задания
Версия для печати и копирования в MS Word

Даны квад­рат­ные трех­чле­ны

f_1 левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус ax плюс 2, \quad f_2 левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 3x плюс b,

f_3 левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те плюс левая круг­лая скоб­ка 3 минус 2a пра­вая круг­лая скоб­ка x плюс 4 плюс b, \quad f_4 левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те плюс левая круг­лая скоб­ка 6 минус a пра­вая круг­лая скоб­ка x плюс 2 плюс 2b.

Пусть раз­но­сти их кор­ней равны со­от­вет­ствен­но A, B, C и D. Из­вест­но, что |A| не равно |B|. Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: C в квад­ра­те минус D в квад­ра­те , зна­ме­на­тель: A в квад­ра­те минус B в квад­ра­те конец дроби . Зна­че­ния A, B, C, D, a и b не за­да­ны.

Спрятать решение

Ре­ше­ние.

Пусть  альфа x в квад­ра­те плюс бета x плюс гамма   — квад­рат­ный трёхчлен с по­ло­жи­тель­ным дис­кри­ми­нан­том T. Тогда его корни опре­де­ля­ют­ся фор­му­лой

x_1, 2= дробь: чис­ли­тель: минус b \pm ко­рень из: на­ча­ло ар­гу­мен­та: T конец ар­гу­мен­та , зна­ме­на­тель: 2 a конец дроби ,

по­это­му

\left|x_2 минус x_1|=\left| дробь: чис­ли­тель: минус b плюс ко­рень из: на­ча­ло ар­гу­мен­та: T конец ар­гу­мен­та минус левая круг­лая скоб­ка минус b минус ко­рень из: на­ча­ло ар­гу­мен­та: T конец ар­гу­мен­та пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 a конец дроби |=  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: T конец ар­гу­мен­та , зна­ме­на­тель: |a| конец дроби .

При­ме­няя эту фор­му­лу че­ты­ре раза, по­лу­ча­ем

A= ко­рень из: на­ча­ло ар­гу­мен­та: a в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та минус 8 пра­вая круг­лая скоб­ка , B= ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус 4 b конец ар­гу­мен­та ,  C= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 3 минус 2 a пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та минус 12 левая круг­лая скоб­ка 4 плюс b пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , D= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 6 минус a пра­вая круг­лая скоб­ка в сте­пе­ни { 2 конец ар­гу­мен­та минус 12 левая круг­лая скоб­ка 2 плюс b пра­вая круг­лая скоб­ка .

От­сю­да сле­ду­ет, что

C в квад­ра­те минус D в квад­ра­те = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби левая круг­лая скоб­ка левая круг­лая скоб­ка 4 a в квад­ра­те минус 12 a минус 12 b минус 39 пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка a в квад­ра­те минус 12 a минус 24 b плюс 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби левая круг­лая скоб­ка a в квад­ра­те плюс 4 b минус 17 пра­вая круг­лая скоб­ка ,

 A в квад­ра­те минус B в квад­ра­те =a в квад­ра­те плюс 4 b минус 17.

Зна­чит, ис­ко­мое от­но­ше­ние равно  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби .

 

Ответ:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби

Спрятать критерии
Критерии проверки:

Вы­ве­де­на или ука­за­на фор­му­ла для мо­ду­ля раз­но­сти между кор­ня­ми урав­не­ния 1 балл.


Аналоги к заданию № 865: 872 Все